vArashi -Artificial Video Game Player

八重樫 剛史

http://varashi.jp/

Agenda

- ▷vArashi プロジェクトの紹介
- ▷vArashi システムのハードウェア
- **▷vArashi** システムのソフトウェア
- ▷事例紹介 (syspuyo2)

vArashi プロジェクトとは?

▷現代の高度なテクノロジを駆使して、ビデオゲームを人間 と同様のインタフェースでプレイしてくれる機械

(vArashi システム)を作る

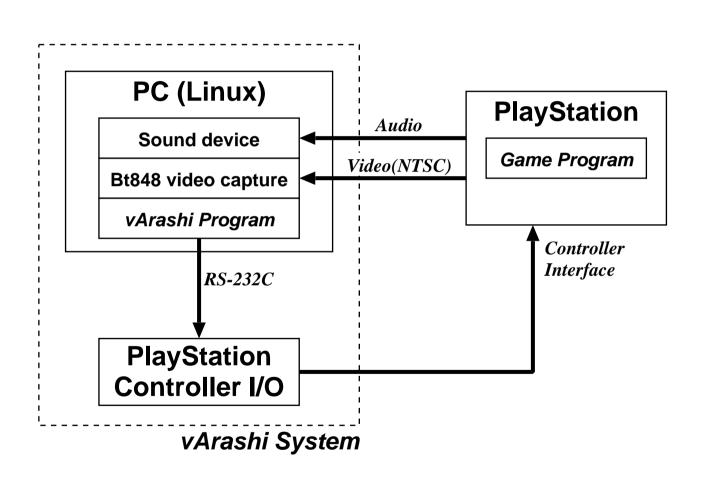
- □構想 2001 年初夏
- □スタート 2001 年秋(LC2001で発表した)
- □varashi.jp 取得 2001 年 11 月
- □プロジェクト構成員 1名

背景

- ▷ありあまる計算機資源
- ▷手軽に入手できる高機能デバイス
 - □ワンチップマイコン
 - □CPLD/FPGA
 - □ビデオキャプチャデバイス

技術的なトピック

- ▷ビデオゲーム用画像認識の研究
 - □ビデオキャプチャプログラミング
 - □マルチメディア命令セットの利用研究
- ▷ビデオゲーム機コントローラインタフェース
 - □ハードウェア設計・製作
 - □組み込みソフトウェア開発
 - □デバイスドライバ開発
- ▷ビデオゲーム思考ルーチンの研究
- ▷リアルタイムプログラミング


意義

- ▷コンピュータビジョン研究プラットフォーム
 - □リアルワールドに比べてずっと単純
- ▷公正なコンピュータプレイヤーの実現
 - □イカサマが起きる余地がない
- ▷ビデオゲームにまつわる必殺技の検証
 - □炎のコマ 使用時は何が起きているのか?

用語の説明

- ▷vArashi (ぶいあらし)
 - □「 virtual ゲームセンターあらし 」
 - □むかしそういうマムガがあった
- ▷vArashi システム
 - □ビデオゲームを遊ぶ機械 ・ システム
- ▷vArashi プログラム
 - □ビデオゲームを遊ぶために作られたソフトウェア

典型的 vArashi システムの構成

典型的 vArashi システムの構成

- ▷PC (PC-AT 互換機)
 - □CPU: Pentium III-S 1.26GHz, メモリ: 256MB
- ▷Bt848 系ビデオキャプチャカード
 - □PC用ビデオキャプチャデバイスの代表
- **PlayStation**
 - □最も一般的なビデオゲームコンソール
- ▷PlayStation コントローラ入力装置
 - □vArashi システムの肝となるデバイス

Brooktree Bt848 family devices

- **PCI Video Decoder**
 - □現在は Conexant Systems Fusion 878A という製品
- ▷安価 ・ 高性能
 - □5,000 円~ の PCI ビデオキャプチャカード
 - □ほぼあらゆるフォーマットでキャプチャが実行できる
 - □妙なこと (圧縮とか) をしないので、画像処理アプリケーションには最適
 - □かさばる PCI カードでしか入手できないのが欠点

bttv ドライバの改良と API の拡張

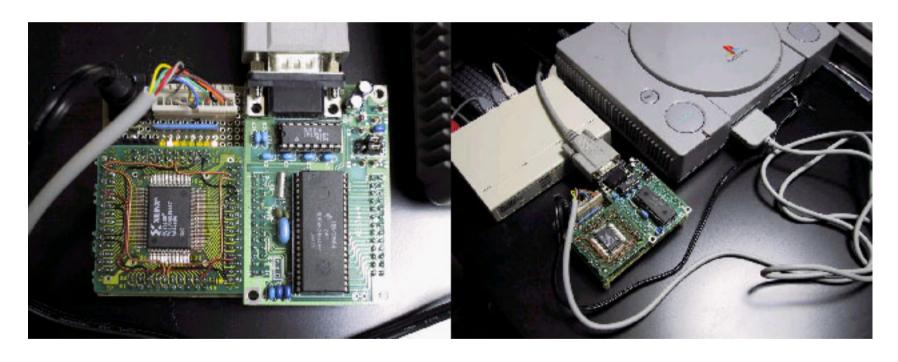
- ▷Linux のビデオキャプチャ API
 - □Video4Linux ... Alan Cox 作
 - □Video4Linux2 ... 動画ハードウェアなどもサポート
- ▷bttv ドライバ
 - □Brooktree Bt848 ファミリ用 ドライバ
 - □V4L, V4L2 両方で利用可能

bttv ドライバの改良

▷ Version 0.8.45

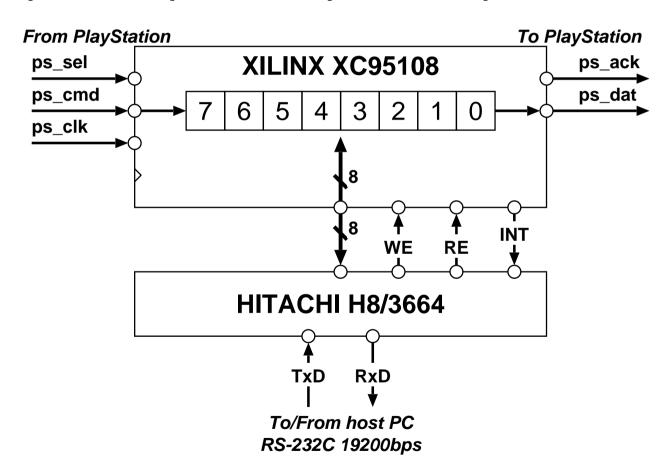
- □1 フレーム(2 フィールド)単位のキャプチャのみ可能
 - ○VSYNC 60Hz のゲームでも 30Hz、2 枚単位でしかキャプチャできない
 - ○表示が見苦しくなる (櫛ノイズ)
 - ○タイミング重視のゲームでは致命的
- □1 フィールドごとに割り込みを発生するように改良

Video4Linux2 の問題


- ▷フレームバッファ確保 API
 - □一般的な手順
- 1. VIDIOC_REQBUFS ioctl でフレームバッファを確保
 - 2. mmap(2) でユーザメモリ空間にマップ
 - □すでに確保されたユーザメモリ空間 (共有メモリなど) をフレームバッファとする方法がない ... バッファ間コピーの発生、パフォーマンスの低下
 - □新 API の導入 ... VIDIOC_SETBUF ioctl

改良版 ドライバ

- ▷sourceforge.jp の CVS から参照可能
 - □http://sourceforge.jp/projects/varsahi/
 - □まだバグだらけ (引数チェックなどが甘い)
 - □そのうち upstream にパッチを送りたい


PlayStation コントローラ入力装置

- ▷PlayStation コントローラを操るためのデバイス
- ▷ホストとは RS-232C で接続

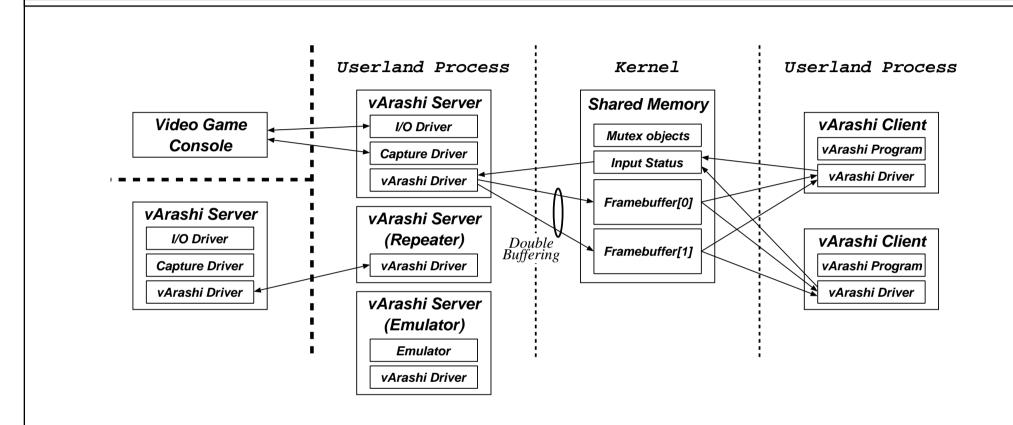
システム構成

▷マイコン(H8/3664) + CPLD(XC95108)

開発方法 & 使用方法

▷開発方法

- □プロトコル解析資料はインターネットに出回っている
- □マイコン: GNU Toolchain でクロス開発
- □CPLD: VHDLで記述 ... Windows 環境が必要
- ▷使用方法
 - □ホストから PlayStation に読み取らせたいバイト列を送るだけ


PlayStation コントローラ入力装置

- ▷製作費 10,000 ~ 20,000 円程度?
 - □秋月電子通商 H8/3664 マイコンキット
 - □余りものの XILINX XC95108
- ▷そのうち回路図やソースコード公開したい
 - □ハードウェアの資料はまとめるのに時間がかかる
 - □すでに入手困難なデバイスを使っているのが問題
- ▷手に入りやすい部品を使って設計しなおしたい
 - □キット頒布とかできたらなおよい

vArashi フレームワーク

- ▷これまでの vArashi システム
 - □ビデオキャプチャ、画像認識、ゲームアルゴリズムなどがひとつの vArashi プログラムに渾然一体
- ▷新しい vArashi システム
 - □役割にあわせて複数のプロセスに分割
 - □共有メモリやセマフォ、TCP/IP などを用いて通信
 - □柔軟に vArashi システムを構成することが可能

vArashi フレームワーク

xmame.vFubuki

- ▷xmame.vFubuki とは
 - □アーケードビデオゲームエミュレータ XMAME に、vArashi サーバ機能 を組み込んだもの
 - □特殊なハードウェアが必要なく、手軽に始められる
 - □ノイズが入りこむ余地もなくなるため、画像認識がやさしくなる

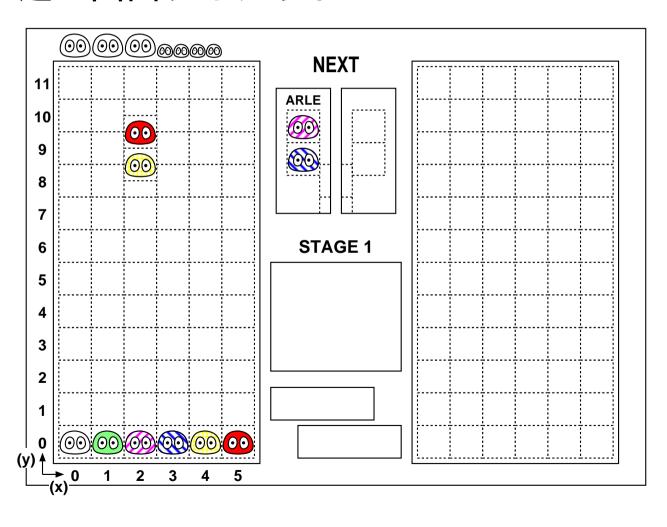
syspuyo2

▷シスぷよ(syspuyo)

- □コンパイルのビデオゲーム「ぷよぷよ」 をターゲットにした vArashi システム
- □なぜこのゲームを選んだのか?
 - ○誰でも知ってる ・ ルールが簡単
 - ○画像認識がやさしい
 - ○連鎖など奥が深くおもしろい
 - ○リアルタイムな駆け引き

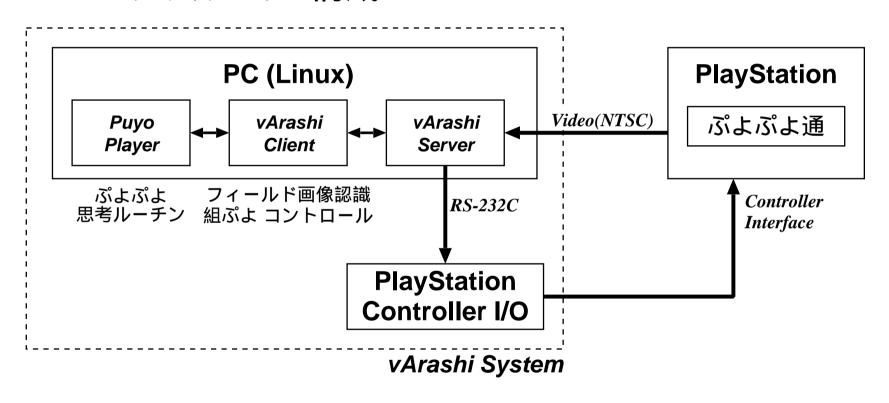
▷シスぷよ通 (syspuyo2)

□「ぷよぷよ通」 に対する syspuyo 実装


syspuyo2: ぷよぷよ

▷ノレーノレ

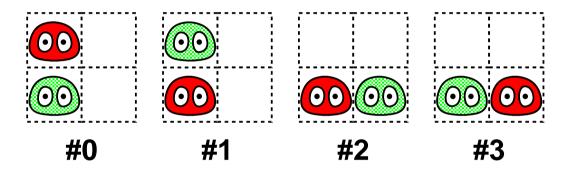
- □プレイヤーごとに 12 段 × 6 列のフィールドがある
- □フィールドにランダム色の「色ぷよ」が2匹一組で降りてくる
- □同じ色が 4 匹以上隣接した 「色ぷよ」 は消える
- □ぷよを消すと相手のフィールドに 「おじゃまぷよ」 が降る
- □「おじゃまぷよ」は隣接した「色ぷよ」が消えるとき一緒に消える
- □「おじゃまぷよ」 を沢山降らせて相手フィールドをぷよで埋めると勝ち


syspuyo2: ぷよぷよ

▷ぷよぷよ通の画面レイアウト

syspuyo2: システム構成

▷vArashi システムの構成


syspuyo2: 画像認識

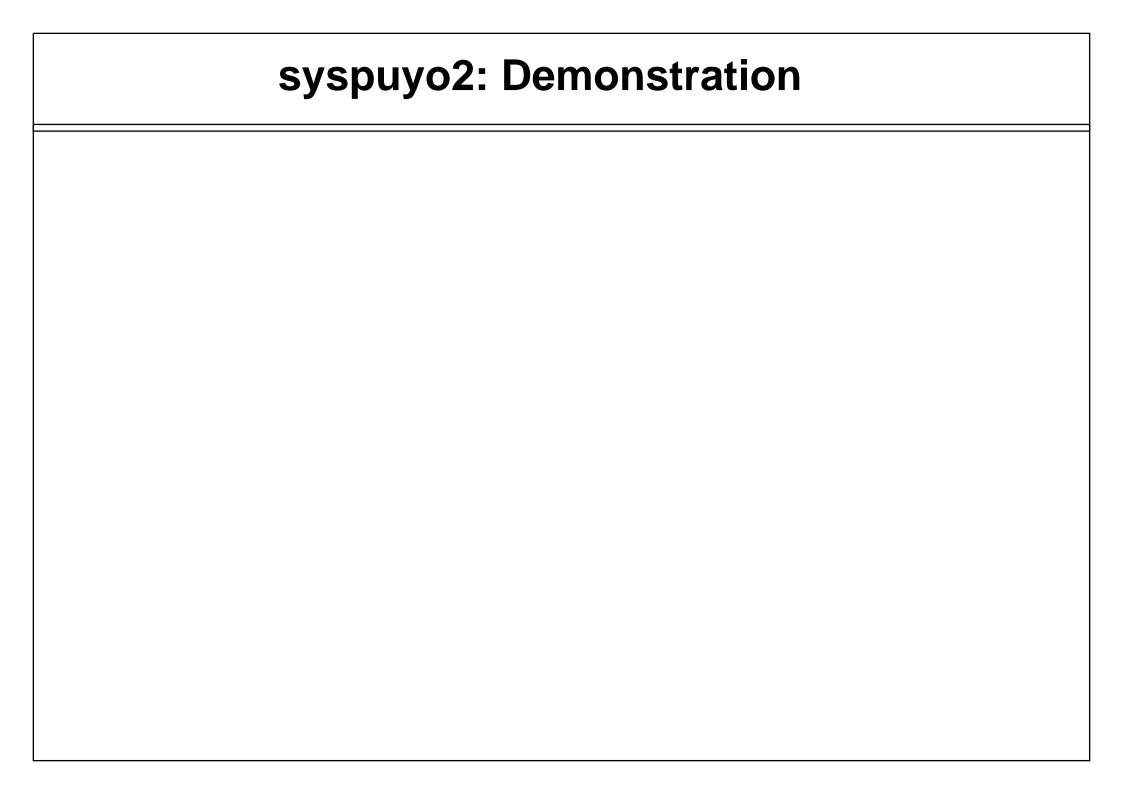
- ▷画像認識の手法
 - □各セル内ピクセルの YUV の合計値から判断
 - □単純だが外乱に弱い(連鎖表示・ 汗・ 涙・「全消し」)
 - □NEXT ぷよ表示部を観察することにより、「配ぷよ」 のタイミングを知る

syspuyo2: プレイヤー

▷プレイヤーのアルゴリズム

□「組ぷよ」が取りうる姿勢はたかだか 4 通り

- □選択できる「手」の種類は5 × 4 + 2 = 22
- □NEXT, NEXT2 ぷよの表示により最大 3 手先までの結果が読める フィールド評価関数を定めて、最善手を求めて探索


syspuyo2: プレイヤー

```
▷プレイヤープログラムとのインタフェース
```

□プレイヤープログラムは UNIX 的なフィルタとして記述

```
(input)
    Field: .....OPYGP
    Next: PGYB
(output)
    Move: 10
```

- □Ruby で記述した思考ルーチン
 - ○評価関数方式で 1 手先(22通り)を全探索
 - ○おそい: 反応速度 100ms ~ 300ms
 - ○よわい

syspuyo2: 今後の改良方針

- ▽画像認識アルゴリズムの改良
 - □外乱に強いアルゴリズム
 - □マルチメディア命令の使用
- ▷プレイヤーアルゴリズムの改良
 - □評価関数の改良:連鎖の定石の認識
 - □ニューラルネットワークによる学習 (妄想)
- ▷対戦機能の強化
 - □相手プレイヤーフィールドの監視
 - □リアルタイムな戦略の変更

まとめ

- ▷PlayStation コントローラ入力装置
- ▷ Video4Linux2 API と bttv ドライバの改良
- ▷vArashi フレームワークの考案と実装
- ▷シスぷよ通 (syspuyo2) 事例紹介

