
The need for setuid style functionality in SELinux environments

Fernando Vázquez
University of Vigo

Department of Electronic Technology
email: flvazquez@uvigo.es

Takashi Horie, Toshiharu Harada
NTT DATA CORPORATION

Research and Development Headquarters
email: {horietk, haradats}@nttdata.co.jp

Abstract

Security Enhanced Linux (SELinux) is a soft-
ware infrastructure that provides the Linux systems
with Mandatory Access Control (MAC) capabili-
ties, but a reasonable strict access control policy
may render many of the existing application unus-
able. The latter is not due to SELinux’s misbehav-
ior, but to the lack of least privilege considerations
in the design of most of the existing applications.
For this reason, some of them need to be granted
extremely powerful permissions, which could not
be safe, or, alternatively, the system administra-
tor can decide to undertake the necessary changes
in the code of all the applications, which is likely
to be unfeasible. In this paper, the authors pro-
pose a solution in which the SELinux kernel is pro-
vided with stripped-downsetuid -like functional-
ities, that greatly ease the integration of existing ap-
plications in a SELinux environment. The access
control implications of this approach, as well as the
resulting security-usability trade-offs, are also cov-
ered in this article.

1 Introduction

As mentioned in the abstract, SELinux is a soft-
ware infrastructure that provides Linux systems
with MAC capabilities. This functionality was
implemented into the kernel as a Linux Security
Module (LSM), whose security policy is config-
ured from user space using a policy compiler and
a loader (to learn the SELinux basics, the docu-
ments [1] and [2] are a good start).

One of the basic design decisions of SELinux
was the way in which processes can change their
security context, operation that is only allowed
upon execve execution. This restriction was
adopted by the SELinux authors because they con-
sidersetuid -like functions harmful, though, do-
ing this, a somewhat unbalanced security-usability

trade-off was implicitly assumed. Thus, applica-
tions that were not designed to support least privi-
lege and isolation (or that do not need it) can hardly
benefit from SELinux. Further discussion on this
important topics is carried out in section2.

After concluding that features analogical to those
offered by the standardset*uid functions is nec-
essary, the authors of this paper decided to imple-
ment them and test their benefits and shortcom-
ings in a widely used application, such asSamba.
The modifications made to the Linux kernel (sec-
tion 4), the SELinux user-space components, such
as the policy (section5) and libraries (section6),
and Samba (section7) are covered in detail.

Since an in-depth discussion of SELinux, LSM
and Samba is beyond the scope of this paper, a list
of relevant bibliography on this topics has been in-
cluded in theBibliographysection.

2 Domain transition on exec. Ad-
vantages and limitations

2.1 User transitions onexecve

SELinux only supports process Security Identifier
(SID) transitions upon program execution so that
inheritance of state and the initialization of the pro-
cess in the new SID can be controlled[3]. This was
a design decision of the creators of SELinux, but it
imposes very severe limitations, that keep many ap-
plications from being able to take advantage of the
kernel’s new access control capabilities. Figure1
shows the transition possibilities ofsshdandsmbd1

with the existing SELinux implementation.
As an example, let’s consider a scenario in which

Samba needs to take advantage of SELinux, so that,
in the event of a user session, a dedicated child pro-
cess should be created in a user-specific domain.

1smbd is the Samba daemon that implements the session
services. The other Samba daemon isnmbd, and deals mostly
with the Windows network browsing tasks.

1

(a) (b)

Figure 1: (left) The session shell can transit to a new domain(right) Transitions are only allowed onexecveexecution

What should be done?

Before answering this question, a brief explana-
tion of the way in which user sessions are estab-
lished is Samba is necessary (to better follow the ex-
planation consult figure1(b)). Whensmbd(process
1) receives a connection request, it spawns a child
process 2to handle the session and, after perform-
ing some brief internal accounting, it resumes its
listening duties. This way, potential requests are not
left unattended during the authentication process.
Both the authentication and the eventual session are
handled by the child process (process 2). Upon suc-
cessful authentication the child changes its Linux
User Identifier (UID) to that of the connecting user,
making use of theseteuid function. However,
it regains root identity, and thus privileges, for sev-
eral operations, including the authentication of new
users. The latter is possible due to the extension of
the SMB protocol, that now supports multiple users
per session.

Sincesmbdmakes no use ofexecve , no domain
transitions are possible with the current SELinux
implementation. As a consequence, sessions run in
the same security context as the parent (i.e.smbd_t)
and, therefore, upon an eventual failure in the ses-
sion management code, a malicious user could ac-
cess any type the mainsmbdprocess has access to,

which, of course, includes other users’ data. Be-
ing restrained to one single domain context, current
SELinux mechanisms cannot be used to further iso-
late and control user sessions, and this is why this
task relies completely on the Samba application it-
self. But the latter is not a good approach, since
user space cannot guarantee security without being
backed by adequate Operating System (OS) mech-
anisms.

If, despite of what has been discussed so far, a
system administrator wanted to run every user ses-
sion on its own security context, thesmbdcode
would have to be extensively modified so that it
can re-exec itself every time someone authenticates
(see figure2(a)). Another approach would be to
split the session management code fromsmbd, cre-
ating a separate program that would be executed
when someone successfully authenticates. None of
these two solutions is an easy task. Furthermore,
adding support for SELinux to applications such as
Apache, or, in general, any application that provides
user sessions by itself (without executing an exter-
nal application for that purpose), would require the
implementation of similar changes, which is very
likely not to be feasible. Further to this, modify-
ing applications on such a fashion is not good from
a software design point of view, since the under-

2

(a) (b)

Figure 2: The use of either transitions on exec (left) or on fork (right) in applications such assambarequires thorough
modifications in the code of the latter, that are very likely not to be feasible.

lying OS’s access control mechanisms are heavily
conditioning the architecture of applications. Be-
sides, most of the applications have to be tweaked
differently, so one should know the internals of each
of them to be able to make the necessary changes,
what renders this solution unpractical.

All the problems mentioned above do not ap-
ply to applications that execute third party appli-
cations, as it is the case ofssh, inetd and crond.
For example,ssh(see figure1(a)), every time it re-
ceives a connection, forks a child to handle the au-
thentication process, but, unlikesmbd, once a user
has been successfully authenticated, it, once more,
forks a new process that will execute (viaexecve)
a shell. Theshell is an application different tossh
and can thus be naturallyexecve d. The same ap-
plies tocrondandinetd, which execute applications
completely unrelated to themselves. In the case of
sambawe would be talking about a single applica-
tion re-exec ing itself, which is quite unusual.

No automatic transitions can be defined forssh,
since the destination security context depends on
the identity of the user that is being authenticated,
which, obviously, is not known beforehand. This
is the reason why thepam_selinuxPAM (Plug-
gable Authentication Modules) module makes use
of setexeccon to request a domain transition,
which is granted if and only if the policy allowsssh

to transit to that security context using the shell as
the entry point.

2.2 set*uid calls

The Linux UIDs can be changed at any time us-
ing theset*uid calls, providing no control over
the inheritance of state or the initialization of the
process in the new identity[3]. The former means
that the user to whom the transition is made via
any of theset*uid calls inherits most of the state
from the original user (variables, file descriptors,
PID), with the exception, of course, of the new UID.
The latter implies that, further to the capability to
use the aforementioned functions, there is no con-
trol on the way the transition to the new UID is per-
formed. It is simply completely allowed or disal-
lowed. In fact, the root user can adopt any of the
UIDs of the system.

Further to this, with the use of some of the
set*uid functions, a process can transit back to its
original UID and then to a different one with no far-
ther controls made by the kernel, which makes the
difference between the different process UIDs very
thin (from a security point of view). As an example,
let’s consider a processP running as a privileged
userR that adopts the low privileged identityU to
perform potentially risky operations. This approach

3

(a) (b)

Figure 3: (left) setuid -like SELinux functionality(right) setfsuid -like SELinux functionality

may seem safe, but this assumption is flawed. In the
event of a buffer overflow bug in the code that runs
as userU, processP could be forced back toR for
the sake of the execution of malicious code, sinceP
is allowed to freely transit back and forth between
both identities.

set*uid functions are used by, among many
others, the smbd daemon (see figure1(b)), that
spawns a child for every user connection. If the
client’s authentication succeeded, the child transits
from the superuser UID to a client specific one, but,
from time to time, it needs to revert to root to per-
form certain tasks. As previously mentioned, an
eventual bug in the code could be exploited by the
client to become root and execute its own code as
a privileged user. This occurs because there’s no
way for the kernel to tell normal from tampered pro-
cesses. The damage of such exploits could be min-
imized if the child process managing the sessions
could be run in a less privileged security context, in
which access to vital files and resources could be
restricted. This is, in fact, the reason why the au-
thors of this paper decided to implement new ways
to perform SID transitions (see section3).

The origin of the unsafeness ofset*uid -like
functions is that the kernel relies all the access con-
trol to user space, which is not enough to guarantee
the security of a system [4]. User space should not
be exclusively responsible for the management of
OS objects (such as files storing private keys) whose
integrity is critical for the system, since it cannot

provide security guarantees without proper OS sup-
port. In such cases, the access control should be
enforced by the kernel and for that purpose a MAC
capable OS is needed.

3 set*uid -like functionality for
SELinux

The authors decided to implement a set of
new functions that provide new methods to per-
form domain transitions and that are analogical
in concept to the standardset*uid functions.
They were calledsetforkcon , setcon and
setfssid . The first is similar in use to the exist-
ing setexeccon SELinux function and the other
two were implemented after itsset*uid counter-
parts.

setforkcon is invoked before the execution of
fork (just as its model function) and the child is
given the security context specified in the call if,
and only if, the parent process has been granted the
transition to the requested domain (see figure2(b)).

setcon mimics the standardsetuid POSIX
function in the SELinux world. With it, applica-
tions can transit to the desired domain as long as
they have been granted the proper permissions (see
figure3(a)).

setfssid, as it name suggests, is analogical to
the standardsetfsuid and allows applications to
change its SID for file system accesses, provided

4

that this operation is allowed by the policy (see fig-
ure3(b)).

From now on, the discussion of these new
set*uid -like functionalities for Linux will be
centered onsetforkcon, except otherwise indicated.

A basic concern aroused before implementing
such new functionalities:would the inheritance of
state and the initialization of the process in the new
SID be controlled as effectively as it is with the use
of setexecconand execve. The answer to the for-
mer is, obviously, no, since, after executing fork,
the new process is a copy of the parent, differing
only in the PID (as usual) and the SID (that can be
changed using the new SELinux library functions).
Regarding the initialization in the new SID, it can-
not be so precisely controlled, but this was the es-
sential trade-off assumed for their implementation.

The authors think that for applications like
Samba, splitting the daemon into a listening server
and a session provider that is launched via execve
is very similar, from a security point of view, to a
new solution using the new SELinux functionali-
ties. Some arguments supporting this thesis follow:

• Before changing the security context func-
tionally identical functions have to be exe-
cuted (setexeccon and setforkcon re-
spectively).

• Only if the right permissions (analogical in
both cases) were granted in the policy, would
the requested transition be performed.

• The initialization of the process is equally con-
trolled with both solutions, since in both cases
the children could be spawned only in the set
of contexts (one per user) allowed by the secu-
rity policy. It could be argued that with the use
of the new SELinux functions the entry point
cannot be specified (since there is noexecve
execution), while usingsetexeccon such a
control is possible. But it should be noticed
that in this case the entry point would be the
current application, not an external one, so
there is no point in doing such a distinction.

• There’s no need to make the child process ex-
ecute a program from a type different from
the parent’s, since both programs belong to the
same application and, therefore, it is trusted.
Anyways, with the proposed extension the
same restrictions could be applied to the child
processes.

With the proposed approach only the inheritance
of state is weakened, since the basic behavior of
fork is not modified and, therefore, the child has ac-
cess to a copy of the parent’s memory at the moment
of executing the function. But this is part of the
trade-off assumed to ease the adoption of a MAC-
capable OS.

It could be thought that the new kernel function-
ality allows wide and arbitrary changing of con-
text (such as commonset*uid functions do), but
this supposed arbitrariness is constrained to a set
of user-specific domains that allow access to user-
specific types of files. For this purpose, new process
controls have been created (see section5).

It could be argued that having all the Samba users
use the samesamba_staff_tdomain for their I/O
would suffice, but, in such scenario, any user could
access another user’s files in the event of a bug in
the code of the child servers.

4 Patches to the Linux Kernel

Though three new functionalities where imple-
mented, this and the following sections will fo-
cus onsetforkcon for the explanation of the
methodology used for their implementation. All
references to kernel files will be relative to the root
of the source tree.

To allow domain transitions on fork, the kernel
needs to be modified as follows:

• fork must be extended so that it can change
its child’s context (see section4.1).

• User space applications must be provided with
a proper interface to the new SELinux func-
tionality (see section4.2).

• The adequate LSM hooks must be modified to
implement the new control functionalities (see
sections4.1and4.3).

• New permissions have to be created so that the
use ofsetforkcon can be controlled (see
section4.4).

4.1 Extending fork

The existingfork functionality was extended in
a way that full compatibility with the original ver-
sion is preserved. Thus, on the one hand, exist-
ing applications can be used without requiring any
change and, on the other hand, it can be used by

5

those willing to take advantage of its new capabili-
ties.

Due to the modular design of LSM it was
not necessary to modify thekernel/fork.
c file. Since fork makes use of the LSM
hook security_task_alloc to set the se-
curity attributes of the new process, only the
SELinux implementation of that function must
be altered to provide the desired features. The
SELinux module implements this hook in the file
security/selinux/hooks.c as the function
selinux_task_alloc_security . Within
this function the requested transition is checked
and, if the security server grants permission, the
transition is actually performed.

4.2 Interface to the new SELinux function-
alities

As mentioned on previous sections, SELinux
only allows transitions onexecve , but this tran-
sitions can be performed automatically or under re-
quest. In the former case, the transition is defined in
the policy and it is automatically attempted when-
everexecve is executed, transparently to the ap-
plication. In the latter case, before forking a child,
the parent process executes a SELinux library func-
tion (see section6 for further details) to set the tran-
sition to be attempted. Once the child has been
spawned, if it executes aexecve function, the
transition defined by the parent will be tried and,
if it is allowed by the policy, performed.

Analogically to the on-demandexecve tran-
sition, applications were provided with a method
to request a determined transition on fork, which
is achieved by adding a new file to the/proc
/*/attr/ directories. The files in this process-
specific directories serve as the interface to several
SELinux-related attributes. Usually they are read-
only files, but in the case of/proc /*/attr/
exec , it can be used to set the desired transition.
To create the new filefork , fs/proc/base.c
in the Linux kernel tree must be patched. The main
modifications are summarized below:

• The enumerationpid_directory_inos
must be added two fields per file to be
created. In the case offork , and fol-
lowing the example of the existing en-
tries, PROC_TGID_ATTR_FORK and
PROC_TID_ATTR_FORKwere added.

• The array tgid_attr_stuff was added

a newpid_entry struct, analogical to that
corresponding to theexec file.

• Similarly, the arraytid_attr_stuff was
added the struct corresponding tofork .

• The functionproc_pident_lookup must
also be modified so that, whenever a ac-
cess is attempted to thefork file, an ad-
equate function is called to provide the an-
swer. To follow the SELinux’s procedure,
the structproc_pid_attr_operations
is used for this purpose (a brief explanation on
this topic is provided in4.3). Thus two new
case s must be added somewhere in the se-
quence ofcase s that precedes this function
call. As expected,PROC_TID_ATTR_FORK
andPROC_TGID_ATTR_FORKare the cases
to add.

4.3 proc LSM hooks

As its name suggests, the aforementioned
proc_pid_attr_operations is the
struct that keeps the pointers to the func-
tions that deal with read and write oper-
ations on the files in theattr directory.
This functions are proc_pid_attr_read

and proc_pid_attr_write , re-
spectively. Both functions have LSM
hooks (security_getprocattr and
security_setprocattr) that are
implemented by SELinux in the file
security/selinux/hooks.c (in the
functions selinux_getprocattr and
selinux_setprocattr).

These two functions set and read the se-
curity attributes of the running process if
adequate permissions have been granted. Ev-
ery process stores its SELinux security at-
tributes in a task_security_struct struct
that is defined in security/selinux/
include/objsec.h . For the sake of
setforkcon a new field fork_sid was
added. In fact, this is the variable read by the
selinux_task_alloc_security hook
(revise section4.1) to set the security context of the
child whenfork is executed.

4.4 Creation of new permissions

If the SELinux module is loaded into the ker-
nel and enabled (i.e. in enforcing mode), when a
process tries to perform an operation on an object

6

(e.g. file, socket, IPC object, etc) the security server
bases its access decision on the security context of
the process, the security context of the object that
it is trying to access, the class of that object (file,
socket, process, etc) and, of course, the operation
itself. The set of operations that can be performed
on an object depends on its class. For example, for
a process object operations such asfork, transition
andsetexec; and for a file object, among many oth-
ers, there areioctl andreadoperations.

SELinux is able to control many of the operations
that can be performed on kernel objects, but, for this
purpose, it needs to assign a unique label to the ob-
ject classes meaningful to be the policy and, for ev-
ery class, the operations to be controlled must also
be defined. This is achieved by means of the file
flask/access_vectors under the policy def-
inition directory2, file in which all the classes, and
the operations on them that are controlled, are de-
fined.

Since we are defining new operations on
processes (i.e. setforkcon , setcon and
setfssid), proper entries must be added to the
aforementioned file under the process class defini-
tion (see section5).

The policy is defined, compiled and loaded into
the kernel from user space, but this policy should
only reference object classes and operations that the
kernel knows about. Otherwise, the policy is mean-
ingless to the kernel. This is why any change in
the fileaccess_vectors (or any other data file
under theflask directory) should be immediately
reflected in the kernel (see section5). Of course, for
the changes to take effect the kernel must be recom-
piled and the system rebooted.

5 SELinux Policy modifications

Since new operations were implemented into the
kernel and we want to make SELinux aware of them
to be able to control them. As previously mentioned
(see section4.4), the SELinux policy is defined out-
side the kernel’s source tree and the definitions un-
der theflask directory must be synchronized with
the kernel.

In the case of setforkcon , first the
access_vectors file was modified as shown
in listing 1. Afterward, the Makefile under the

2The SELinux policy directory is usually located some-
where under/etc and is, thus, completely unrelated to the
kernel’s source tree. In the case of the Debian the directory is
/etc/selinux .

flask directory should be used to generate the
header files needed by the kernel and that must be
copied into thesecurity/selinux/include
kernel’s directory.

Finally, for the user-space to be aware of the ob-
ject classes and operations, the same header files
should also be copied to the/usr/include/
selinux directory. This is not always necessary,
though, since applications hardly ever need to know
about this information.

Listing 1: selinux/flask/access_vectorsexcerpt

class process
2 {

fork
4 transition

.....
6 fork_transition

fs_fork_transition
8

setexec
10 setfork

setfssid
12 setfscreate

.....
14 }

6 Kernel/User space interface to
the new kernel functions

The access to the new kernel functionalities has
been largely inspired by the current implementation
of the library functionsetexeccon, which interfaces
with the kernel by means of the/proc/*/attr/exec
files (see line11of code listing2). A process could
access this file directly but the use of the wrapper is
a cleaner and, in case the name of the file changed
or a completely new interface to the kernel (such as
a system call) was offered, only the library would
have to be changed, not all the applications.

Thus, three new library functions where added:
setforkcon , setcon andsetfssid .

7 Practical case: Samba

Although throughout this papersetforkcon
was used to explain the implementation of
set*uid like functionality onto the Linux kernel,
to secure Samba thesetcon function was used
(setfssid was also be a good choice).

7

Listing 2: setforkcon.cexcerpt

fd = open("/proc/self/attr/fork",
O_RDWR);

12 if (fd < 0)
return -1;

14 if (context)
ret = write(fd, context, strlen(

context)+1);
16 else

ret = write(fd, NULL, 0);
18 close(fd);

As it was previously mentioned the objective was
to run the Samba user sessions in a user-specific do-
main. For that, after successfully authenticating a
user, thesmbd daemon should callsetcon indi-
cating the security context corresponding to the au-
thenticated user. If the policy allows the transition
to the user-specific domain will be performed.

But, since Samba requires powerful permissions
to run, the previous is not enough. Ifsmbd adopted
the basicuser_t after a user’s successful authen-
tication, it would die away right after that, due to
theuser_t ’s restrictive policy, that is not enough
to carry out the tasks required by a Samba session.
Further to this, the aforementioned user-specific do-
mains should not be the ones granted to the user on
standard login sessions, since for the latter is usu-
ally enough with a domain of theuser_t ’s char-
acteristics.

As example, let’s consider auserxthat success-
fully establishes a Samba session with the modified
smbd daemon. The UID of thesmbd child process
would beuserx and its security contextuserx:
smbd_r:smbd_userx_t :

root@SELINUX:~> (ps ax -Z;pstree)|
grep smbd|grep -v grep

498 system_u:system_r:smbd_t /usr
/sbin/smbd -D

5684 userx:smbd_r:smbd_userx_t /usr
/sbin/smbd -D
|-smbd---smbd

The way in which Samba was patched and the
policy changes related to the user-specific security
contexts is not covered in this paper.

7.1 Installation

In short, to install a security enhanced Samba the
following steps were followed:

• Modify the file access_vectors under

the SELinux policy directory tree (see sec-
tion 4.4).

• Out of the previous file generate and install
the necessary header files for the Linux ker-
nel and the user-space SELinux libraries (see
section5).

• Patch, recompile and install the Linux kernel
(see section4).

• Patch, recompile and install Samba.

• Define a suitable policy for Samba.

• Recompile the binary policy.

• Reboot the system.

• Load the new policy (this is usually done auto-
matically after rebooting).

8 Conclusions

The authors’ first impression towards SELinux
was great, because SELinux along with the LSM
was finally providing Linux with truly advanced
and flexible access control mechanisms. However,
trying to set up a production environment, what
appeared to be the SELinux shortcoming showed
up: SELinux only allows security transitions on
execve .

But, in fact, the latter was one of the original de-
sign decisions and could be even be considered a
good security feature, since it does impose harder
conditions for security domain transitions. But, on
the other hand, it does not contemplate the needs
of applications that, while managing user sessions,
do not rely their management on a different appli-
cation. This is the case, among many others of
Samba, which due to the aforementioned imposi-
tion can hardly benefit from the existing SELinux
implementation.

For this reason the authors decided to extend the
SELinux functionalities, for which purpose both its
kernel and user-space parts had to be modified. This
task was not as hard as expected, since LSM as well
as SELinux were originally designed so that they
are almost non-intrusive with respect to the rest of
the kernel’s code. Thus, the parts that need to be
modified are quite easily located.

Regarding the modification of the applications, it
is greatly simplified with the adoption of the new

8

functionalities. Usually, only the part of the appli-
cation dealing with authentication has to be modi-
fied, so that, after successfully login, one of the new
functions is executed (thus running the session in
the adequate security context).

A task that remains pretty painstaking is the def-
inition of an appropriate policy, although, to ease
this task, suitable new macros should be created.

Finally, the authors consider that with the new
functions, the somewhat unbalanced security vs us-
ability trade-off of the original SELinux is more
equilibrated.

9 Future work

Due to the Windows client’s lack of support for
SELinux, it can neither handle nor understand SIDs,
which forces the current implementation of Security
Enhanced Samba to rely exclusively on the Samba
user identity to perform access control. Further to
this, there is not an underlying infrastructure pro-
viding network-wide SIDs. Research on this topics
is currently being undergone by the authors of this
article and any positive results will, of course, be
shared with the whole Linux community under the
terms and conditions of GPL.

10 Acknowledgments

Thanks to the EU-Japan Centre for Industrial Co-
operation, NTT Data Corporation and the Univer-
sity of Vigo for supporting my research work in
Japan. In other order of matters, thanks to all the
people involved in the Linux, LSM and SELinux
projects.

11 Acronyms

OS Operating System

SELinux Security Enhanced Linux

UID User Identifier

MAC Mandatory Access Control
The need for a MAC mechanism arises when
the security policy of a system dictates that
protection decisions must not be decided by
the object owner and, besides this, the system
must enforce the protection decisions (over the
wishes or intentions of the object owner).

SID Security Identifier
The SID is a local, non-persistent integer that
is mapped by the security server to a security
context.

LSM Linux Security Module
Infrastructure that provides the Linux kernel
with the ability to load security modules that
perform additional access control routines.

PAM Pluggable Authentication Modules
PAM is a suite of shared libraries that enable
the local system administrator to choose how
applications authenticate users. It is even pos-
sible to change the authentication mechanisms
of PAM-aware applications, without rewriting
or recompiling them.

References

[1] Faye Coker. Getting started with se linux
howto: the new se linux, March 2004.
http://www.lurking-grue.org/
GettingStartedWithNewSELinuxHOWTO.
pdf .

[2] Faye Coker. Writing se linux pol-
icy howto, March 2004. http:
//www.lurking-grue.org/
WritingSELinuxPolicyHOWTO.pdf .

[3] Stephen Smalley. Configuring the selinux pol-
icy, January 2003.http://www.nsa.gov/
selinux/papers/policy2/t1.html .

[4] Peter A. Loscocco, Stephen D. Smalley,
Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff
Turner, and John F. Farrell. The inevitabil-
ity of failure: The flawed assumption of se-
curity in modern computer environments. In
Proceedings of the 21st National Information
Systems Security Conference, pages 303–314,
1998. http://www.nsa.gov/selinux/
papers/inevit-abs.cfm .

[5] Department of Defense. TCSEC (trusted
computer system evaluation criteria),
December 1985. DoD 5200.28-STD,
http://csrc.ncsl.nist.gov/
secpubs/rainbow/std001.txt .

[6] Serge E. Hallyn. Domain and type enforcement
for linux. In Proceedings of the 4th Annual
Linux Showcase and Conference, 2000.

9

http://www.lurking-grue.org/GettingStartedWithNewSELinuxHOWTO.pdf
http://www.lurking-grue.org/GettingStartedWithNewSELinuxHOWTO.pdf
http://www.lurking-grue.org/GettingStartedWithNewSELinuxHOWTO.pdf
http://www.lurking-grue.org/WritingSELinuxPolicyHOWTO.pdf
http://www.lurking-grue.org/WritingSELinuxPolicyHOWTO.pdf
http://www.lurking-grue.org/WritingSELinuxPolicyHOWTO.pdf
http://www.nsa.gov/selinux/papers/policy2/t1.html
http://www.nsa.gov/selinux/papers/policy2/t1.html
http://www.nsa.gov/selinux/papers/inevit-abs.cfm
http://www.nsa.gov/selinux/papers/inevit-abs.cfm
http://csrc.ncsl.nist.gov/secpubs/rainbow/std001.txt
http://csrc.ncsl.nist.gov/secpubs/rainbow/std001.txt

[7] Chris Wright, Crispin Cowan, James Mor-
ris, Stephen Smalley, and Greg Kroah-
Hartman. Linux security module framework.
In Proceedings of the Ottawa Linux Sympo-
sium, 2002.http://lsm.immunix.org/
docs/lsm-ols-2002/html/ .

[8] Stephen Smalley, Chris Vance, and
Wayne Salamon. Implementing selinux
as a linux security module, May 2002.
http://www.nsa.gov/selinux/
papers/module/t1.html .

[9] Rule set based access control (rsbac) for linux.
http://www.rsbac.org/ .

10

http://lsm.immunix.org/docs/lsm-ols-2002/html/
http://lsm.immunix.org/docs/lsm-ols-2002/html/
http://www.nsa.gov/selinux/papers/module/t1.html
http://www.nsa.gov/selinux/papers/module/t1.html
http://www.rsbac.org/

	Introduction
	Domain transition on exec. Advantages and limitations
	User transitions on execve
	set*uid calls

	set*uid-like functionality for SELinux
	Patches to the Linux Kernel
	Extending fork
	Interface to the new SELinux functionalities
	proc LSM hooks
	Creation of new permissions

	SELinux Policy modifications
	Kernel/User space interface to the new kernel functions
	Practical case: Samba
	Installation

	Conclusions
	Future work
	Acknowledgments
	Acronyms
	Bibliography

