
JWebPresenter: A Universal Web Presenting Tool
Liang Zhao and Hideo Yamamoto

Faculty of Engineering, Utsunomiya University
Utsunomiya, Tochigi, 321–8585, Japan.

Email: {zhao, yamamoto}@is.utsunomiya-u.ac.jp

Abstract— The JWebPresenter project aims at creating a
universal Web presenting tool. It uses bitmap image as the
presenting format to avoid compatibility problem. To get
the maximum efficiency, protocol-independent techniques are
used to handle the cache/proxy issue and to avoid duplicate
image fetching. Other features include platform independence,
scalability, simplicity and open source.

I. INTRODUCTION

We consider the way to perform a presentation, i.e., pre-
senting. Recently, the primary way to give a presentation has
being shifted from old-fashioned methods to PC-Projector
(PP) based method. PP based presentation has advantages
over the old-fashioned methods, but there also exist problems
in real applications. In particular, we observe that existing
tools cannot satisfy our requirement for distance presenting
([7]). Here let us summarize it as the next problem.

Suppose there are a number of audiences who may not
locate locally and may have different kinds of information
devices (e.g., computers, PDAs or even cell phones). How
can a presenter perform the presentation? If there is a
solution, how efficient is it? Here we can assume that a public
network (e.g., the Internet) is available. See Fig. 1.

presenter

audiences

Web

Fig. 1. Illustration of the Web presenting problem.

Speaking this kind of presenting, one may notice that it
is much like a TV learning program. Actually our objective
can be said to be an efficient, networked, TV-program like
distance presenting system. This paper shows our solution.
We note that it is a visual-only solution. An audio solution
could be obtained by any existing audio streaming tool, see
e.g., http://linux-sound.org/netaudio.html.

A. Relations to other works

Computer based distance learning has a long history. As
far as we know, most previous studies (e.g., [1], [2], [5]) are
based on HTML, XHTML or SMIL, which are shown to be
efficient for interactive or self-training courses. On the other
hand, however, these systems cannot fit for our requirement
well. This is because that:

1) Basically HTML (and others) only defines the structure
of contents, not the appearance of the presentation
(which is left as a work of browsers); on the other
hand, the most important factor in a presentation is that
all audiences can have the same appearance (screen),
even if they are using different kinds of devices.

2) In a presentation, a presenter usually wants to control
what the audiences see (i.e., all audiences can see
nothing but what the presenter wants to show). Thus a
self-playing HTML page, a Flash clip or other things
that require client interactivity is not preferred.

3) Text based presentations such as the HTML suffer
the compatibility problem (font, language, browser-
different or browser-dependent rendering etc).

4) Other limitations. For instance, the important full
screen function is not available in existing browsers.

It is easy to see that these problems can be solved by image
based Web presenting. Currently, this means to transmit the
bitmap-image based screenshots of a local presentation to
distance audiences. We note that it is easy to obtain image-
based slides with existing PP presentation tools by exporting
into image (available in PowerPoint) or by capturing the
screen (works for all PP presentation tools).

Actually bitmap-image based distance presenting is not a
new idea. MagicPoint ([3]) and VNC tools ([4], [6]) can
do presenting in the same way. Comparing to such existing
tools, JWebPresenter is a presenting-only tool. It is more
simple, efficient, scalable and feature-rich (with respect to
the functions of presenting), see Section III for a comparison.
The contribution of this paper also includes a relatively
detailed study on the data amount of such presenting.

The rest of this paper is organized as follows. In Section II,
we explain basic ideas of JWebPresenter. In Section III,
we show a simple solution and detailed data comparisons.
Finally in Section IV, we conclude with remarks.



II. BASIC IDEAS IN JWEBPRESENTER

Let us first give an overview of JWebPresenter.

JWebPresenter provides no utility for creating contents.
It only cares presenting. One can use one’s favorite tool to
create the contents (slides), and use JWebPresenter to present
them (after converting the contents into supported images).
See an illustration in Fig. 2.

JWebPresenter
(bitmap images)

presentation dataslide creating tool

(PowerPoint,

MagicPoint, ...)

Fig. 2. Illustration of using JWebPresenter in a presentation.

JWebPresenter works in the server-client style, where
presenter is the server, and audiences are clients. They are
connected by a (TCP/IP) network. We need an address (a
URL) for presenting, which points to the currently displayed
slide. Fig. 3 illustrates the data transferring in JWebPresenter,
where the address is denoted by ”slide”.

GET slide

OK slide

audiences see

GET slide

OK slide

GET slide

OK slide

slide

presenter

slide <-- 1

slide <-- 2

slide <-- 3

presenter shows

1

2

2

1

Fig. 3. Illustration of data transferring in JWebPresenter presenting.

As said before, we provide no interactive ability between
server and client. This is because that, unlike a self-training
course, in a presentation, audiences are preferred to be
in ”read-only” mode – it is the presenter who leads the
presenting. As a consequence, the server only need to care
the slides, whereas a client must fetch slides periodically.

The above idea was adopted in MagicPoint (by the mgpnet
utility), which employs the auto refresh feature of HTML to
tell client the time period to access the unique presentation
URL (mgpnet has a built-in tiny HTTP server). In practice,
unfortunately, this simple idea has poor performance if there
is no new idea. Firstly, since image files are generally large,
we want to avoid duplicate fetches (which is not available in
MagicPoint). Secondly, we want to have considerations on
the client cache issue (cache is not available for MagicPoint
since mgpnet generates screenshots on-the-fly).

For that purpose, we introduce control parameters to pro-
vide clients an easy way to control the fetch. One parameter

is the sequence number of the slide, by which a client could
cache fetched slides and thus skip duplicate image fetch.
Another parameter is the suggested next fetch time, which
gives clients a hint of when to perform the next fetch (the
auto refresh feature of HTML is not used since we want a
protocol-independent implementation).

There is another kind of cache problem. In preliminary
study, we observed that the internal cache function of proxy,
browser or Java plugin (we use the Java language) can
prevent an audience to correctly fetch the target if the URL is
static (as in MagicPoint). Thus we add two more parameters
slide url and next ctl url, which specify the dynamic URL of
the currently displayed slide and the next (also dynamic) URL
containing control parameters (for the next slide). Besides,
we also have static URLs linking to the current displayed
image and control parameter file for a new client to keep up
with the presenting.

Let us denote the slide URL by ”slide”, and denote the
control parameter URL by ”ctl”. (Both ”slide” and ”ctl” vary
during a presenting.) The pseudo-code of our basic imple-
mentation (which considers no cache function for simplicity)
can be written as Fig. 4 and Fig. 5 for server and client,
respectively.

while not finished {
determine new "slide" and new "ctl"
put control parameters into old "ctl"

}

Fig. 4. Pseudo-code of a JWebPresenter server.

while not finished {
get control parameters from old "ctl"
renew "slide" and "ctl"
if sequence_number has changed {

get the slide from new "slide"
set timer for the next fetch

}
}

Fig. 5. Pseudo-code of a JWebPresenter client.

We note that multiple sources can be used to adapt for the
client heterogeneity such as the resolution and processing
power (see [7]). Our implementation supports this.

III. A SIMPLE SOLUTION: JWEBPRESENTER SS

In this section, we show a simple solution JWebPresenter
SS, which uses unmodified images. An advanced solution
will be discussed in the next section.

A. Server implementation

In JWebPresenter SS, we employ an HTTP or an FTP
server to provide clients the control parameters and slides.
This can greatly simplify our implementation, as well as



obtaining good scalability (since modern HTTP/FTP servers
are extensively studied and well tuned). We only have to
take care of the shown slides and the creation of control
parameters. For that purpose, we provide the presenter a
small Perl script (and a shell script for UNIX/Linux users).

Many HTTP/FTP servers have been tested, including

• Apache (http://www.apache.org/),
• Savant (http://savant.sourceforge.net/),
• thttpd, mini httpd (http://www.acme.com/software/),
• tinyweb (http://www.ritlabs.com/en/products/tinyweb/),
• vsftpd (http://vsftpd.beasts.org/)

that run under various platforms, though even a simplest
HTTP/FTP server should work. Fig. 6 shows a screenshot
of the interface of our Perl script, which is running on a
PDA (iPAQ h3600) powered by Linux (Familiar 0.7.2) and
the thttpd HTTP server.

Fig. 6. Interface screenshot of the server Perl script.

B. Client implementation

It is more difficult to implement a client than a server. We
have chosen Java as the programming language in order to
use its rich and portable standard library.

The client can run either in applet mode (need no instal-
lation) or in application mode (requires an installation). Its
capability depends on the hosting Java Virtual Machine (VM
in short), i.e., it supports all protocols and all image formats
supported by the Java VM. According to our tests, currently a
desktop Java VM (version 1.4.2) can handle protocols HTTP
and FTP, whereas the one shipped with Zaurus SL-C760
(PDA) can only handle HTTP. On the other hand, they all
support the GIF, JPEG and PNG image formats.

Screenshots of the client working in applet mode are
shown in Fig. 7 (Windows XP) and Fig. 8 (Zaurus SL-C760).
A screenshot demonstrating the application mode is shown
in Fig. 9 (Redhat Linux 9). We note that in application mode,
the information bar ”Java Applet Window” in applet mode
does not exist. In that case, an audience has no way to know
the presenting tool (in full screen mode).

Fig. 7. Screenshot of the client in applet mode (Windows XP).

Fig. 8. Screenshot of the client in applet mode (Zaurus SL-C760).

Fig. 9. Screenshot of the client in application mode (Redhat Linux 9).



Recall that we want all audiences to have the same
screen. Therefore our implementation provides clients little
functionality. The current implementation allows a client to
change the window size (including full screen mode), enable
or disable the auto resize option (i.e. to use the original
image size or to fit for the window), and can get (debug)
informations on the presenting.

Finally, we note that recently the number of Java embedded
information devices (including computers, PDAs and cell
phones) is increasing rapidly. We have also developed a
client JWebPresenter MDIlet (using the MDIP 1.0 API)
with J2ME Wireless Toolkit (see http://java.sun.com/j2me/).
Fig. 10 shows a screenshot (running on the emulator).

Fig. 10. Screenshot of JWebPresenter MIDlet.

C. On the performance of JWebPresenter SS

For the purpose of estimating the efficiency of bitmap
image based presenting, we have performed the next two
tests. They may not be very extensive, but can give us a
rough estimation on the data amount.

Firstly, we randomly picked up 20 PowerPoint files from
the Internet. Each file is exported into three formats GIF,
JPEG and PNG by PowerPoint 2002. In exporting, we use
the default settings of PowerPoint except that the resolution
is set to 1023×768 which matches the mainstream of today’s
PP presentation. The comparison of data amount is shown in
Fig. 11, where the data items are as follows.

• #slide: number of slides,
• PPT (KB): size (in KB) of the original PowerPoint file,
• GIF (KB): size of the obtained GIF files,
• JPEG (KB): size of the obtained JPEG files,
• PNG (KB): size of the obtained PNG files,
• Mixed (KB): sum of the minimum sizes of slides by

mixing the GIF, JPEG and PNG files.

The last line in Fig. 11 shows the sums for all items.

From Fig. 11, we can see that bitmap image based present-
ing does not require much data amount. (In fact, comparing to
the original PowerPoint files, the total size even decreased.)
On the other hand, the average data amount per slide is

20451/478 < 43 KB.

Fig. 11. Raw data amount (in KB) comparison.

If it takes 30 seconds for a presenter (for us, we often take
one or more minutes) to explain one slide, this shows that
the required bandwidth is at most

20451 × 1024 × 8/(478 × 30 × 1000) < 12 (kbps).

In real applications, we must consider the overhead, which
include control parameters and packet headers. For that pur-
pose, we performed another test by comparing JWebPresenter
SS with VNC tools running in the read-only mode, i.e., a
VNC client can watch the server screen but has no user
interactivity. (We note the mgpnet utility of MagicPoint did
not work on our Linux machine, hence the data amount
of MagicPoint is not available.) The VNC tools that we
have tested are RealVNC v4.0 beta ([4]) and TightVNC
v1.2.9 ([6]). Since in our preliminary tests, TightVNC shows
its superior performance to RealVNC, we only compare
TightVNC and JWebPresenter SS in the following.

For TightVNC, we do a PowerPoint presentation on a
Windows PC running TightVNC server, and receive the
presentation by a Linux PC running TightVNC viewer. For
JWebPresenter SS, on the contrary, we do the presentation
on the Linux PC, and receive it by the Windows PC.
All packets are captured and analyzed by ethereal 0.10.0a
(http://www.ethereal.com) running on the Linux PC. See
Fig. 12 for the result comparison, where the same presen-
tation files in Fig. 11 are used. The items are

• TightVNC (max compression): data amount (in KB) of
TightVNC using its maximum compression level,

• TightVNC (normal): data amount of TightVNC using it
normal compression level,

• JWebPresenter SS (mixed): data amount of JWeb-
Presenter SS using mixed formats (see also Fig. 11).

From Fig. 12, we can see that JWebPresenter SS performs



Fig. 12. Packeted data amount (in KB) comparison with TightVNC.

much better than TightVNC. Let us give two more remarks.

Firstly, TightVNC is slow, especially in high compression
level. This is because that it computes the data on-the-fly (this
is the feature of VNC tools and MagicPoint). On the other
hand, JWebPresenter SS works on pre-created files (this is
the feature of most presentations) and utilizes a Web server
to transmit them to clients efficiently. We have no idea on
the number of clients that a TightVNC server or MagicPoint
can serve concurrently, but clearly JWebPresenter SS is more
scalable (the number can be several tens, hundreds or even
more, depending on the performance of the Web server).

Secondly, the presentation quality of TightVNC often goes
bad (notable noise) in high compression level. We consider
that this is due to its usage of JPEG compression, since JPEG
is known to have problems for non-natural pictures which are
common in presentations. On the other hand, JWebPresenter
SS can choose the best one from GIF, JPEG and PNG (for
each individual slide), thus can get better flexibility.

Therefore we can conclude that, for distance presenting,
JWebPresenter is superior to VNC tools (and MagicPoint).
Notice that Fig. 12 also gives us a rough estimation on the
average data amount per slide (including overhead), which is

23233/478 < 49 KB.

Suppose again that one slide takes 30 seconds, we can get
an estimation on the required network bandwidth (for a real-
time presenting), which is

23233 × 1024 × 8/(478 × 30 × 1000) < 14 (kbps).

Finally, for clarity, we give a detailed comparison of the
three Web presenting tools MagicPoint (mgpnet), VNC tools
and JWebPresenter SS in the following table.

TABLE I

FEATURE COMPARISON OF WEB PRESENTING TOOLS.

feature MagicPoint VNC tools JWebPresenter
platform UNIX/Linux Windows independent (PC,

(may fail) UNIX/Linux PDA, cell phone...)
protocol HTTP VNC HTTP, FTP

(independent)
full screen no yes yes
auto resize no no yes

image creating on-the-fly on-the-fly offline
data amount n/a large small
cache/proxy none none yes

consideration
scalability n/a poor good

require client no yes no (applet)
installation yes (application)

package size big big small
non-presenting slide desktop none

feature creating management
main NetPBM, Perl none Java VM, Perl

requirement Web browser Web server

IV. CONCLUSION AND REMARK

In this paper, we have shown a Web presenting tool
JWebPresenter SS, whose efficiency is shown by com-
paring with other solutions including the MagicPoint and
VNC tools. JWebPresenter is an open source project, see
http://zhao.sourceforge.net/ for details.

We also have a developing version JWebPresenter AS,
which tries to automatically reduce the data amount by
introducing techniques (e.g., motion compensation) from
video compression. Currently the simplest difference mode
(i.e., transmit only the difference between two pictures) is
implemented. Preliminary tests shows this method can further
reduce the data amount by about 10%. Further details are
omitted due to the incompleteness.

ACKNOWLEDGMENT

This research is partially supported by the International
Communications Foundation (ICF), Japan. We would like
to thank the Open Source Development Network, Inc. for
hosting the JWebPresenter project.

REFERENCES

[1] H.Y. Chen, G.Y. Chen and J.S. Hong, “Design of a Web-based
Synchronized Multimedia Lecture System for Distance Education”, in
Proc. IEEE International Conference on Multimedia Computing and
Systems Volume II (1999), pp. 887–891.

[2] S. Sampath-Kumar, A. Banerjea and M. Moshfeghi, “WebPresent – A
World Wide Web based tele-presentation tool for physicians”, SPIE
Medical Imaging 97, vol. 3031, pp. 832–843 (1997).

[3] MagicPoint, http://www.mew.org/mgp/.
[4] RealVNC, http://www.realvnc.com/.
[5] N. Sala, “Multimedia Technologies in University Courses: Some

Examples”, in Proc. IEEE International Conference on Multimedia
Computing and Systems Volume II (1999), pp. 979–981.

[6] TightVNC, http://www.tightvnc.com/.
[7] L. Zhao and H. Yamamoto, ”A Simple Rendering System for Web

Presentation”, in Proc. ICACT 2004, pp. 627–631 (2004).


